sábado, 27 de febrero de 2016

Localizado un planeta en el Cúmulo de las Hyades

La estrella enana roja K2-25, perteneciente al cúmulo de las Hyades, se indica en esta vista del Digitized Sky Survey mediante un círculo rojo. Las Hyades es el cúmulo abierto más cercano a la Tierra. Es visible en el cielo nocturno en los cuernos de la constelación de Tauro, el toro. Crédito: A. Mann / McDonald Obs./DSS



Andrew Mann, astrónomo de la Universidad de Texas, y sus colegas, han descubierto un planeta en un cúmulo de estrellas cercano que podría ayudar a los científicos a comprender mejor cómo se forman y evolucionan estos cuerpos. El descubrimiento del planeta K2-25b ha sido posible gracias al telescopio espacial Kepler y al Observatorio McDonald de la Universidad. 

 K2-25b orbita en torno a una estrella enana roja, un astro más pequeño y menos brillante que el Sol. Las enanas rojas son las estrellas más abundantes de la galaxia, y en particular, el astro estudiado se encuentra en el cúmulo de las Hyades, el más cercano a nuestro planeta. Sus estrellas son jóvenes, por lo que sus planetas también debe serlo.

 "Los cúmulos abiertos son herramientas poderosas para el estudio porque todas las estrellas poseen la misma edad y composición", dijo Mann. "Muchos planetas podrían detectarse orbitando en torno a las jóvenes estrellas de un cúmulo. Y luego, podríamos compararlos con los planetas más viejos encontrados en otros lugares para analizar sus diferencias y estudiar así su evolución con el tiempo".

jueves, 11 de febrero de 2016

Las ondas gravitacionales, detectadas cien años después de la predicción de Einstein

Por primera vez, los científicos han observado ondulaciones en el tejido del espacio-tiempo, llamadas ondas gravitacionales, llegando a la Tierra procedentes de un evento catastrófico en el distante universo. Esto confirma una importante predicción de la teoría de la relatividad general de Albert Einstein de 1915 y abre una nueva ventana sin precedentes en el cosmos.

Las ondas gravitacionales llevan consigo información acerca de sus dramáticos orígenes y sobre la naturaleza de la gravedad que no puede obtenerse de otra manera. Los físicos han llegado a la conclusión de que las ondas gravitacionales detectadas fueron producidas durante la última fracción de segundo de la fusión de dos agujeros negros para producir un solo agujero negro más masivo en rotación. Esta colisión de dos agujeros negros había sido predicha pero nunca antes había sido observada.

Las ondas gravitacionales fueron detectadas el 14 de septiembre de 2015 a las 5:51 hora de verano del este de Estados Unidos (09:51 UTC) por los dos detectores gemelos del Observatorio por Interferometría Láser de Ondas Gravitacionales (LIGO, por sus siglas en inglés), ubicados en Livingston, Louisiana, y Hanford, Washington, EE.UU. Los observatorios LIGO están financiados por la National Science Foundation (NSF), y fueron concebidos y construidos, y son operados por Caltech y MIT. El descubrimiento, aceptado para su publicación en la revista Physical Review Letters, fue realizado por la Colaboración Científica LIGO (que incluye la Colaboración GEO600 y el Australian Consortium for Interferometric Gravitational Astronomy) y la colaboración Virgo usando datos de los dos detectores LIGO.

El grupo de Relatividad y Gravitación (GRG) de la Universidad de las Islas Baleares (UIB) es el único grupo de investigación en España que ha participado en este histórico éxito científico a través de la colaboración científica LIGO y GEO. La UIB participa en la colaboración científica LIGO desde 2002, si bien la doctora Alicia Sintes, profesora del Departamento de Física, fue una de las investigadoras que intervino en la puesta en marcha de este grupo de científicos en 1997. La doctora Sintes y el doctor Sascha Husa, también profesor de la UIB y miembro del GRG, forman parte del Consejo de LIGO.

Alicia Sintes está emocionada. Ella ha dedicado casi 20 años a la caza de estas elusivas ondas y ha trabajado para mejorar los detectores existentes y futuros. Para ella, el 14 de septiembre quedará marcado en su memoria como el inicio de una nueva era en astronomía: la astronomía gravitacional. Una herramienta que ayudará a desvelar muchos misterios del Universo.

Simulación de ondas gravitacionales de una pareja de agujeros negros. (Imagen: NASA)




Todos los miembros de la colaboración LIGO en la UIB han trabajado sin cesar durante estos últimos meses analizando los datos del primer periodo de observación de Advanced LIGO y los datos relacionados con este evento en particular. Varios de los investigadores de la UIB han contribuido de forma directa a este descubrimiento. Entre ellos se encuentra Miquel Oliver, un estudiante de doctorado de la UIB, que ha tenido la oportunidad única de vivir directamente este descubrimiento, ya que desde principios de septiembre se encontraba en la sala de control de LIGO Hanford monitorizando el detector, y caracterizando la calidad de los datos. A su vez, el profesor Sascha Husa, junto con el investigador postdoctoral David Keitel y el estudiante de doctorado Francisco Jiménez, han contribuido directamente a la identificación de la fuente a través de su investigación sobre la fusión de agujeros negros.

Con el fin de discernir el origen cósmico de una señal de onda gravitacional, o para calcular las masas de los objetos implicados, hay que resolver las ecuaciones de Einstein, que son el núcleo de la teoría de la relatividad general, y entender cómo las propiedades de la señal de las ondas gravitacionales dependerán de las propiedades de la fuente a través de las posibles señales.

Sascha Husa nos lo explica: “La idea básica es muy similar a la de aplicaciones de teléfonos inteligentes para identificar música, como Shazam. Si escuchas una canción en un bar ruidoso, la aplicación puede consultar una base de datos de posibles señales, y usando algoritmos matemáticos para compensar el ruido, te dirá cuál se ajusta mejor. Mi trabajo consiste en hacer un catálogo de todas las posibles señales de ondas gravitacionales procedentes de la fusión de agujeros negros, para que los que analizan los datos puedan compararlas con las señales inmersas en ruido que son registrada por LIGO”.

El desarrollo de este tipo de catálogos de canciones de agujeros negros ha sido el centro de la investigación de Sascha Husa durante la última década. Junto con sus colegas en la UIB, en la Universidad de Cardiff y el Instituto Max Planck de Física Gravitacional en Potsdam, el doctor Husa ha desarrollado modelos que no sólo describen la fusión de dos agujeros negros de forma precisa, sino que sus fórmulas también pueden calcularse rápidamente con los grandes ordenadores utilizados en el análisis de los datos de LIGO. Esta rapidez fue esencial en los últimos meses para identificar rápidamente el origen de la señal. Algunas de las simulaciones numéricas del la UIB sobre la colisión de agujeros negros han sido elaboradas por el estudiante de grado Rafel Jaume y algunas de ellas pueden ser visualizadas en el canal de Youtube UIB@GRG. Uno de los resultados clave calculados en base a los cálculos del grupo de la UIB es la potencia radiada por la fuente: 300 masas solares por segundo, más que cualquier otro acontecimiento astronómico jamás observado desde el Big Bang.

Para Alicia Sintes y los otros miembros del grupo, ahora está empezando la fase más excitante del análisis de los datos de LIGO, justo después de que haya finalizado el primer periodo de observación y los detectores se están actualizando para poder volver a operar en el otoño con una mejor sensibilidad. Junto con Miquel Oliver y con la ayuda técnica de Pep Covas y Laura Keitel, están buscando señales continuas procedentes de púlsares desconocidos (estrellas de neutrones en rotación). Estas señales son tan débiles, que es necesario integrar todos los datos tomados durante los 4 meses para tener alguna oportunidad de ver algo. Si este análisis desvelase alguna señal, ésta nos aportaría información sobre la materia en el interior de las estrellas de neutrones, un objeto del tamaño aproximado de Menorca y con una masa un 50% mayor que nuestro Sol, gobernado por las leyes de la teoría cuántica.

De acuerdo con la relatividad general, una pareja de agujeros negros orbitando uno alrededor del otro pierde energía mediante la emisión de ondas gravitacionales, produciendo un acercamiento gradual entre ambos durante miles de millones de años, y luego mucho más rápidamente en los últimos minutos. Durante la última fracción de segundo, los dos agujeros negros chocan entre sí a casi la mitad de la velocidad de la luz y forman un único agujero negro más masivo, convirtiendo una parte de la masa de ambos en energía, de acuerdo con la fórmula de Einstein E = mc2. Esta energía se emite como una fuerte explosión final de ondas gravitacionales. Basándose en la física del choque entre dos agujeros negros, los científicos de LIGO estiman que la masa de los agujeros negros de este evento era 29 y 36 veces mayor que la del Sol, y que el evento tuvo lugar hace mil trescientos millones de años. Una masa aproximadamente 3 veces mayor que la del Sol se convirtió en ondas gravitacionales en una fracción de segundo, con una potencia pico de unas 50 veces la de todo el Universo visible. Estas son las ondas gravitacionales que LIGO ha observado.

El descubrimiento fue posible gracias a las capacidades mejoradas de Advanced LIGO, una importante actualización que aumenta la sensibilidad de los instrumentos en comparación con los detectores LIGO de primera generación, lo que permite un gran aumento del volumen del universo explorado y el descubrimiento de las ondas gravitacionales durante su primer periodo de observación. La National Science Foundation de Estados Unidos lidera el apoyo financiero a Advanced LIGO. Organismos de financiación en Alemania (Sociedad Max Planck), Reino Unido (Consejo de Infraestructuras de Ciencia y Tecnología, STFC) y Australia (Consejo Australiano de Investigación) también han contribuido significativamente al proyecto. Varias de las tecnologías clave que hicieron Advanced LIGO mucho más sensibles se han desarrollado y probado por la colaboración británico-alemana GEO. El clúster Atlas del AEI Hannover, el Laboratorio LIGO, la Universidad de Syracuse y la Universidad de Wisconsin Milwaukee han aportado recursos informáticos de manera significativa. Varias universidades han diseñado, construido y probado componentes clave para Advanced LIGO: la Universidad Nacional de Australia, la Universidad de Adelaide, la Universidad de Florida, la Universidad de Stanford, la Universidad de Columbia de Nueva York, y la Universidad Estatal de Louisiana.

En cada observatorio, los interferómetros LIGO de 4 km de largo en forma de L utilizan luz láser separada en dos haces que van y vienen dentro de los brazos (tubos de más de un metro de diámetro guardados en un vacío casi perfecto). Los haces se utilizan para controlar la distancia entre los espejos posicionados de forma muy precisa en los extremos de los brazos. De acuerdo con la teoría de Einstein, la distancia entre los espejos cambiará una cantidad infinitesimal cuando una onda gravitacional pase por el detector. Se puede detectar cambios en las longitudes de los brazos más pequeños que la diezmilésima parte del diámetro de un protón (10-19 metros). Son necesarios observatorios independientes y ampliamente separados para determinar la dirección del evento que causa las ondas gravitacionales, y también para verificar que las señales proceden del espacio y no son de algún otro fenómeno local.

La investigación en LIGO la lleva a cabo la Colaboración Científica LIGO (LSC), un grupo de más de 1000 científicos de universidades de todo Estados Unidos y de otros 14 países. Más de 90 universidades e institutos de investigación de la LSC desarrollan tecnología para el detector y analizan datos; alrededor de unos 250 estudiantes contribuyen de forma relevante a la colaboración. La red de detectores LSC incluye los interferómetros de LIGO y el detector GEO600. El equipo de GEO incluye científicos del Instituto Max Planck de Física Gravitacional (Albert Einstein Institute, AEI), Leibniz Universität Hannover, junto a socios de la Universidad de Glasgow, Universidad de Cardiff, la Universidad de Birmingham, otras universidades en el Reino Unido, y la Universidad de las Islas Baleares en España.

LIGO fue originalmente propuesto como un medio para detectar estas ondas gravitacionales en los años 1980 por Rainer Weiss, profesor de física, emérito, del MIT; Kip Thorne, que ocupa la cátedra del profesor Richard P. Feynman de física teórica de Caltech, emérito; y Ronald Drever, profesor de física, emérito, también de Caltech.

La investigación en Virgo se lleva a cabo por la Colaboración Científica Virgo, un grupo de más de 250 físicos e ingenieros pertenecientes a 19 laboratorios europeos diferentes: 6 del Centro Nacional de Investigación Científica (CNRS) de Francia; 8 del Instituto Nacional de Física Nuclear (INFN) en Italia; 2 de Nikhef en los Países Bajos; el Instituto Wigner en Hungría; el grupo POLGRAW en Polonia; y el Observatorio Gravitacional Europeo (EGO), el laboratorio que alberga el interferómetro Virgo cerca de Pisa, Italia. (Fuente: UIB/DICYT)

martes, 9 de febrero de 2016

La causa de ciertas ráfagas de rayos gamma procedentes del centro de nuestra galaxia

Se cree que el centro de nuestra galaxia la Vía Láctea contiene materia oscura debido a que alberga una gran concentración de masa, incluyendo densos cúmulos de estrellas y un agujero negro.

La materia oscura es una forma extraña de materia que no parece emitir ni absorber radiación electromagnética, y que apenas interactúa con otras partículas. En ese sentido, se podría decir que es "invisible" o que es "oscura" como el propio espacio. No obstante, se sabe que está ahí porque ejerce una influencia gravitacional en su entorno. A partir de la rotación de las galaxias, se infiere que hay más masa que la que emite o absorbe radiación.

Un hallazgo concluyente de colisiones de materia oscura en el centro galáctico sería un gran paso adelante para avanzar en el conocimiento de la materia oscura y del propio universo.

Estudios anteriores sugerían que ciertos brotes de rayos gamma procedentes de esa densa región central de la Vía Láctea podrían estar causados por la colisión entre partículas de materia oscura.

Sin embargo, una nueva investigación realizada por un grupo en Estados Unidos y otra igual de reciente llevada a cabo de manera independiente por un equipo en los Países Bajos indican que el exceso observado de rayos gamma del interior de la galaxia procede probablemente de una nueva fuente, y no de la materia oscura. Los mejores candidatos son estrellas de neutrones de rotación rápida, las cuales serán objetivos prioritarios en futuras búsquedas.

Dos estudios, hechos por dos grupos independientes de Estados Unidos y Países Bajos indican que el exceso observado de rayos gamma procedentes del interior de la galaxia es probablemente debido a una nueva fuente distinta a la materia oscura. (Foto: Christoph Weniger, UvA. © UvA/Princeton)

El grupo de investigación de la Universidad de Princeton y del Instituto Tecnológico de Massachusetts (MIT) en Estados Unidos, encabezado por Mariangela Lisanti y Benjamin Safdi, y el equipo de la Universidad de Ámsterdam en los Países Bajos encabezado por Christoph Weniger, utilizaron dos técnicas diferentes para determinar de forma independiente que esas señales de rayos gamma no se originan en la aniquilación de materia oscura.

Se cree que las partículas de materia oscura forman hasta el 85 por ciento de la masa en el universo, pero nunca han sido detectadas directamente. La colisión de dos WIMPs (partículas teóricas masivas que interactúan débilmente), según un modelo de la materia oscura ampliamente aceptado, ocasiona que se aniquilen entre sí para producir rayos gamma, que son la forma de luz de mayor energía en el universo.



viernes, 5 de febrero de 2016

Un platillo volante glacial

Un equipo de astrónomos ha utilizado los telescopios ALMA e IRAM para realizar la primera medición directa de la temperatura de los grandes granos de polvo que se encuentran en las partes exteriores de un disco de formación de planetas alrededor de una estrella joven. Aplicando una novedosa técnica a las observaciones de un objeto conocido como “Platillo Volante”, se ha descubierto que los granos tienen temperaturas mucho más bajas de lo esperado: -266 grados centígrados. Este sorprendente resultado sugiere que será necesario revisar los modelos de estos discos.

El equipo internacional, liderado por Stéphane Guilloteau,  del Laboratorio de Astrofísica de Burdeos (Francia), midió la temperatura de los grandes granos de polvo que hay alrededor de la joven estrella 2MASS J16281370-2431391, en la espectacular región de formación estelar de Rho Ophiuchi, que se encuentra a unos 400 años luz de la Tierra.

Esta estrella está rodeada por un disco de gas y polvo. Estos discos se denominan discos protoplanetarios, ya que se trata de las primeras etapas en la creación de sistemas planetarios. Este disco en particular se ve casi de canto, y su aspecto en las imágenes de luz visible ha hecho que sea apodado como el Platillo Volante.

Los astrónomos utilizaron ALMA (Atacama Large Millimeter/submillimeter Array) para observar el resplandor proveniente de moléculas de monóxido de carbono en el disco de 2MASS J16281370-2431391. Fueron capaces de crear imágenes muy nítidas y encontraron algo raro: ¡en algunos casos vieron una señal negativa! Normalmente una señal negativa es físicamente imposible, pero en este caso hay una explicación que nos lleva a una conclusión sorprendente.

La joven estrella 2MASS J16281370-2431391 se encuentra en la espectacular región de formación estelar Rho Ophiuchi, que se encuentra a unos 400 años luz de la Tierra. Está rodeada por un disco de gas y polvo — estos discos se denominan discos protoplanetarios, ya que se trata de las primeras etapas en la creación de sistemas planetarios. Este disco en particular se ve casi de canto y su aspecto en las imágenes de luz visible ha hecho que sea apodado como el Platillo Volante. La imagen principal muestra parte de la región de Rho Ophiuchi e, insertada, vemos una imagen ampliada del Platillo Volante obtenida en el infrarrojo desde el telescopio espacial Hubble de la NASA/ESA. (Foto: Digitized Sky Survey 2/NASA/ESA)
El autor principal, Stéphane Guilloteau, desvela la historia: "Este disco no se observa contra un cielo negro y vacío. En cambio, vemos su silueta frente al brillo de la nebulosa Rho Ophiuchi. Este resplandor difuso se extiende demasiado como para ser detectado por ALMA, pero el disco la absorbe. La señal negativa resultante significa que partes del disco están más frías que el fondo. ¡La Tierra está casi literalmente a la sombra del Platillo Volante!"

El equipo combinó las mediciones del disco llevadas a cabo por ALMA con las observaciones de la luz de fondo del telescopio de 30 metros IRAM, instalado en España. Derivaron una temperatura para los granos de polvo del disco de sólo -266 grados (sólo 7 grados sobre el cero absoluto o 7 Kelvin) a una distancia de unos 15.000 millones de kilómetros de la estrella central. Se trata de la primera medición directa de la temperatura de granos grandes (con dimensiones de aproximadamente un milímetro) en este tipo de objetos.

Esta temperatura es mucho menor de lo que predicen los últimos modelos, que estiman temperaturas de entre -258 y -253 ºC (entre 15 y 20 Kelvin). Para resolver esta discrepancia, y dado que alcanzan temperaturas tan bajas, las características de estos grandes granos de polvo deben ser diferentes a lo que se creía hasta ahora.

"Para establecer cuál es el impacto de este descubrimiento en la estructura del disco, tenemos que encontrar qué propiedades del polvo pueden resultar plausibles a temperaturas tan bajas. Tenemos algunas ideas: por ejemplo, la temperatura puede depender del tamaño del grano, siendo los granos más grandes más fríos que los más pequeños. Pero es demasiado pronto para estar seguros", agrega el coautor Emmanuel di Folco (Laboratorio de Astrofísica de Burdeos).

Si se determina que estas bajas temperaturas del polvo son una característica normal de los discos protoplanetarios, esto podría tener muchas consecuencias para la comprensión de cómo se forman y evolucionan.

Por ejemplo, las propiedades del polvo determinan qué sucede cuando estas partículas chocan y, por lo tanto, se convierten en posibles semillas para la formación de planetas. Aún no es posible evaluar si estas diferencias en las propiedades del polvo son significativas o no en este sentido.

También se sabe que existen discos de polvo más pequeños, y que las bajas temperaturas del polvo también pueden tener un importante impacto en ellos. Si estos discos se componen principalmente de granos más grandes y fríos de lo que se pensaba hasta ahora, esto implicaría que estos discos compactos pueden ser arbitrariamente masivos, por lo que incluso podrían formar planetas gigantes relativamente cerca de la estrella central.

Será necesario llevar a cabo más observaciones, pero parece que el polvo frío encontrado por ALMA puede tener consecuencias significativas para la comprensión de los discos protoplanetarios. (Fuente: ESO)