martes, 30 de octubre de 2012

Nuestra galaxia está envuelta por un colosal halo de gas caliente

El satélite astronómico Chandra de rayos X, de la NASA, ha proporcionado evidencias de que nuestra galaxia la Vía Láctea está rodeada por un enorme halo de gas caliente que se extiende por cientos de miles de años-luz.

Se estima que la masa del halo es comparable a la masa de todas las estrellas de nuestra galaxia.

Un equipo de cinco astrónomos utilizó datos reunidos por el Chandra, el Telescopio Espacial XMM-Newton de la Agencia Espacial Europea, y el satélite Suzaku, mayormente japonés, para determinar los valores máximos y mínimos de la temperatura, la extensión y la masa del halo de gas caliente.
La Vía Láctea y las Nubes de Magallanes rodeadas por el halo de gas caliente. (Foto: NASA/CXC/M.Weiss; NASA/CXC/Ohio State/A Gupta et al)
.

El Chandra observó ocho fuentes brillantes de rayos X situadas lejos de la galaxia, a distancias de cientos de millones de años-luz. Los datos revelaron que los rayos X de estas fuentes lejanas son absorbidos selectivamente por iones de oxígeno en las cercanías de nuestra galaxia. La naturaleza de la absorción permitió a los científicos determinar que la temperatura del halo absorbente es de entre 1 millón y 2,5 millones de grados centígrados aproximadame

Otros estudios ya indicaron que la Vía Láctea, así como otras galaxias, podían estar rodeadas por una masa de gas caliente, con temperaturas de entre 100.000 grados y un millón. También hubo indicios de la existencia de un componente más caliente, con una temperatura superior a 1 millón de grados.

viernes, 26 de octubre de 2012

Los agujeros negros habrían sido comunes en el universo temprano

Con las imágenes de rayos-X más profundas a la fecha, los astrónomos encontraron la primera evidencia directa de que los masivos agujeros negros eran comunes en el universo temprano. El hallazgo realizado con el Observatorio Chandra muestra que agujeros negros muy jóvenes crecieron más agresivamente de lo previamente pensado, en tándem con el crecimiento de las galaxias que los hospedaban.




Al apuntar a Chandra a una región del cielo por más de seis semanas, los astrónomos obtuvieron lo que se conoce como el Campo Profundo Sur de Chandra (CDFS, Chandra Deep Field South) Esas imágenes se empezaron a obtener en un sondeo iniciado en 1999. Al combinar esos datos con imágenes ópticas e infrarrojas de Hubble, los astrónomos fueron capaces de buscar agujeros negros en 200 distantes galaxias de cuando el universo tenía entre 800 millones a 950 millones de años de edad (un corrimiento al rojo cosmológico, z, de entre 6 y 7).

"Hasta ahora no teníamos idea qué estaban los agujeros negros en estas tempranas galaxias o si existían", señaló Ezequiel Treister de la Universidad de Hawai, autor principal del estudio que aparecerá mañana en Nature (ya se encuentra online, ver abajo). "Ahora sabemos que están allí y que están creciendo mucho".

El súper crecimiento implica que los agujeros negros en el CDFS son versiones menos extremas de cuásares -objetos muy luminosos generados por material que cae a agujeros negros supermasivos. Sin embargo, las fuentes en el CDFS son unas cien veces más débiles y los agujeros negros son mil veces menos masivos que aquellos en cuásares.

Las observaciones hallaron que más del 30% de las galaxias distantes contienen agujeros negros supermasivos creciendo. Si se extrapola esos resultados a todo el cielo habría al menos 30 millones de agujeros negros supermasivos en el universo temprano. Este es un factor 10.000 veces mayor que el número estimado de cuásares en aquellos tiempos primitivos del cosmos.

"Parece que hemos encontrado toda una nueva población de agujeros negros bebé", comentó el coautor Kevin Schawinsky de la Universidad de Yale. "Pensamos que estos bebés crecerán en un factor de entre 100 y 1000, convirtiéndose finalmente en agujeros negros gigantes que vemos hoy casi 13 mil millones de años después".

Una población de jóvenes agujeros negros en el universo temprano había sido predicha, pero no observada. Cálculos detallados muestran que la cantidad de crecimiento de agujeros negros observada por este equipo es unas 100 veces mayor que las estimaciones previas.
Como los agujeros negros están envueltos por espesas nubes de gas y polvo, los telescopios ópticos no los pueden detectar frecuentemente. Sin embargo, las altas energías de la luz en rayos-X puede penetrar esas paredes.

Los físicos que estudian los agujeros negros quieren saber más acerca de los primeros y supermasivos agujeros negros que se formaron y cómo crecieron. Aunque ya se había encontrado evidencia de un crecimiento paralelo entre agujeros negros y galaxias en el universo cercano, los nuevos resultados de Chandra muestran que esta conexión comenzó antes de lo pensado.

"La mayoría de los astrónomos piensa que en el universo actual, agujeros negros y galaxias crecen de manera simbiótica", explicó Priya Natarajan, coautora del trabajo. "Hemos mostrado que esta relación existió desde mucho antes".

Se ha sugerido que los agujeros negros tempranos habrían jugado un rol importante en despejar la "niebla" cósmica del hidrógeno neutral que bañaba al universo temprano cuando las temperaturas se enfriaron luego del Big Bang. Sin embargo, el estudio de Chandra muestra que las "paredes" de polvo y gas detuvieron la radiación ultravioleta generada por agujeros negros por lo que no debieron ser los responsables de la llamada "reionización". Por lo tanto, las estrellas y no los agujeros negros son probablemente quienes hayan contribuido a salir de esa "edad oscura" del amanecer cósmico.

miércoles, 24 de octubre de 2012

Primer análisis en 3D de un filamento de materia oscura

Un filamento gigante de materia oscura, que se extiende a lo largo de 60 millones de años-luz desde uno de los cúmulos de galaxias más masivos conocidos, MACS J0717.5+3745, ha sido analizado tridimensionalmente.

El fantasmal filamento forma parte de una telaraña cósmica que constituye la estructura a gran escala del universo, y que es una reliquia de los primeros instantes después de la creación del universo. Dicha telaraña ha suscitado en los últimos años mucho interés entre los cosmólogos, sobre todo desde unas observaciones hechas una década atrás por el satélite astronómico Chandra de rayos X .


El análisis del filamento gigante de materia oscura lo ha hecho el equipo de Mathilde Jauzac del Laboratorio de Astrofísica de Marsella, dependiente del Centro Nacional para la Investigación Científica (CNRS) en Francia. En la investigación también han trabajado científicos de otras instituciones. Los datos usados provienen del Telescopio Espacial Hubble (de la NASA y la Agencia Espacial Europea), así como de otros telescopios.

Si la gran masa que se le ha medido al filamento de materia oscura es representativa de lo que puede haber en el resto del universo, entonces los filamentos de esta clase deben contener más de la mitad de toda la masa del universo.

Nunca nadie ha podido observar directamente a la materia oscura, ni tampoco se sabe de qué está hecha, pero los astrónomos están seguros de que existe debido a la manera en que su atracción gravitacional afecta a las concentraciones visibles de materia normal en el espacio. Se barajan varias identidades para la materia oscura. A la espera de hacer un descubrimiento que demuestre que una de ellas corresponde a la materia oscura, los científicos avanzan de momento por la vía de la eliminación de posibilidades. Si un hallazgo demuestra que la materia oscura no puede tener una de esas identidades propuestas, la lista de candidatos se reduce y la investigación se concentra en ellos.

Una deducción hecha a partir de la teoría del Big Bang es que las variaciones en la densidad de la materia durante los primerísimos instantes de existencia del universo tras el Gran Estallido hicieron que la mayor parte de la materia del cosmos se condensase en una red de filamentos entrelazados. Esta deducción está respaldada también por simulaciones digitales de la evolución cósmica, las cuales sugieren que el universo, a gran escala, está estructurado como una red, con largos filamentos conectando unos con otros los lugares del cosmos ocupados por cúmulos muy masivos de galaxias. Una peculiaridad de estos vastos filamentos es que están hechos casi por completo de materia oscura.

La primera identificación convincente de una sección de uno de estos filamentos fue hecha meses atrás. Ahora, el equipo de Mathilde Jauzac ha conseguido ir un paso más allá, al estudiar la estructura de un filamento en tres dimensiones. Ver un filamento en 3D permite eliminar muchos de los errores potenciales y de las incertidumbres que se presentan cuando se examina una imagen plana de una de esas estructuras.

lunes, 22 de octubre de 2012

Datos clave de la misión Gaia

La misión Gaia de la ESA censará mil millones de estrellas dentro de nuestra propia galaxia, determinando con precisión su magnitud, posición, distancia y desplazamiento. Para ello, observará cada uno de los astros más de 70 veces a lo largo de los cinco años que durará su misión.

Está previsto que esta misión descubra cientos de miles de nuevos objetos celestes, desde planetas extrasolares a estrellas ‘fallidas’, o enanas marrones. Dentro de nuestro propio Sistema Solar, Gaia catalogará cientos de miles de asteroides.


Entre las contribuciones que realizará a la astrofísica destacan la detección y caracterización de decenas de miles de sistemas planetarios extrasolares, y un completo estudio de una gran variedad de cuerpos celestes, tales como objetos menores en nuestro propio Sistema Solar, otras galaxias o más de medio millón de lejanos cuásares. Esta misión también pondrá a prueba la Teoría General de la Relatividad, enunciada por Albert Einstein.

El nombre de Gaia procede del acrónimo inglés de ‘Interferómetro Astrométrico Global para la Astrofísica’, que hacía referencia a las técnicas de interferometría óptica que se iban a usar en un principio. Aunque se haya cambiado el método de observación, se decidió mantener el nombre de la misión.

Su lanzamiento está previsto para finales de 2013, a bordo de un lanzador Soyuz-Fregat que despegará desde el complejo de Sinnamary en el Puerto Espacial Europeo, Guayana Francesa.

El observatorio está en desarrollo, comenzando la fase de ensayos. El contratista principal es la compañía EADS Astrium SAS, con sede en Toulouse.
Gaia estudiará las estrellas de nuestra galaxia desde una órbita en torno al segundo punto de Lagrange, L2. Este punto, 1,5 millones de kilómetros más alejado del Sol que la Tierra, acompaña a nuestro planeta en su movimiento de traslación, de forma que el satélite, la Tierra y el Sol permanecerán siempre alineados. Este tipo de órbita permite garantizar que ninguno de estos cuerpos celestes se interpondrá con el campo de visión de Gaia.

Los instrumentos de Gaia son tan precisos que, si estuviese en la Tierra, sería capaz de medir el pulgar de una persona situada en la superficie de la Luna.

El transmisor de Gaia utilizará muy poca potencia, menos que una bombilla convencional de 100 W. A pesar de ello, será capaz de enviar datos a gran velocidad (cerca de 5 Mbit/s) a lo largo de los 1,5 millones de kilómetros que lo separarán de nuestro planeta. Para recibir su señal se utilizarán las estaciones de seguimiento más potentes de la ESA: las antenas de 35 metros de Cebreros, España, y Nueva Norcia, Australia.

Las cifras del censo celeste son impresionantes. De media, Gaia descubrirá cada día 10 estrellas rodeadas por su propio sistema planetario, 10 estrellas explotando en otras galaxias, 30 estrellas ‘fallidas’, o enanas marrones, y un gran número de cuásares alimentados por agujeros negros supermasivos.

Se estima que Gaia detectará unos 15.000 planetas fuera de nuestro Sistema Solar al analizar los minúsculos cambios en la posición de una estrella debidos a las perturbaciones gravitatorias de los planetas que la rodean.

Gaia también pondrá a prueba la Teoría General de la Relatividad de Albert Einstein, midiendo cómo afecta el campo gravitatorio del Sol a la luz de las estrellas con una precisión de dos partes por millón. (Fuente: ESA)

viernes, 19 de octubre de 2012

Encontrado un planeta en el sistema estelar más cercano a la Tierra

Astrónomos europeos han descubierto un planeta con una masa similar a la de la Tierra orbitando una estrella en el sistema Alfa Centauri — el más cercano a nuestro planeta. También es el exoplaneta más ligero descubierto hasta el momento alrededor de una estrella de tipo Sol. El planeta fue detectado utilizando el instrumento HARPS, instalado en el telescopio de 3,6 metros en el Observatorio La Silla de ESO, en Chile. Los resultados aparecieron online en la revista Nature, en su edición del 17 de octubre de 2012.

Alfa Centauri es una de las estrellas más brillantes de los cielos australes y el sistema estelar más cercano a nuestro Sistema Solar — se encuentra a tan sólo 4,3 años luz de distancia. En realidad se trata de un sistema estelar triple, que consiste en dos estrellas similares al Sol orbitando cerca la una de la otra, designadas como Alfa Centauri A y B, y una estrella roja débil más distante conocida como Próxima Centauri. Desde el siglo XIX, los astrónomos especulaban con la posibilidad de la existencia de planetas orbitando estos cuerpos, ya que sería el lugar más cercano en el que encontrar un huésped que pudiera albergar vida más allá del Sistema Solar, pero búsquedas de gran precisión no revelaban nada. Hasta ahora.


“Nuestras observaciones se prolongaron durante más de cuatro años, utilizando el instrumento HARPS, y han relevado una señal diminuta, pero real, que muestra un planeta orbitando Alfa Centauri B cada 3,2 días”, afirma Xavier Dumusque (Observatorio de Ginebra, Suiza, y Centro de Astrofísica de la Universidad de Oporto, Portugal), autor principal del artículo. “¡Es un descubrimiento extraordinario y ha llevado nuestra tecnología hasta sus límites!”

El equipo europeo detectó  el planeta captando los pequeños bamboleos en el movimiento de la estrella Alfa Centauri B generados por el tirón gravitatorio del planeta que la orbita. El efecto es diminuto — hace que la estrella se mueva hacia delante y hacia atrás no más de 51 centímetros por segundo (1,8 km/hora, más o menos la velocidad que alcanza un bebé cuando gatea). Es la precisión más alta alcanzada nunca con esta técnica.

Alfa Centauri B es muy similar al Sol, pero ligeramente más pequeña y menos brillante. El nuevo planeta descubierto, con una masa algo mayor que la de la Tierra, se encuentra orbitando la estrella a unos seis millones de kilómetros de distancia, mucho menor que la de Mercurio con respecto al Sol en nuestro Sistema Solar. La órbita del otro componente brillante de esta estrella doble, Alfa Centauri A, se mantiene a cientos de veces esa distancia, pero aún así sería un objeto muy brillante en los cielos de este planeta.

El primer exoplaneta alrededor de una estrella tipo Sol fue encontrado por el mismo equipo en 1995 y, desde entonces, ha habido más de 800 descubrimientos confirmados, pero la mayor parte son planetas mucho más grandes que la Tierra, abundando los planetas tipo Júpiter. El reto al que se enfrentan ahora los astrónomos es detectar y caracterizar un planeta con masa similar a la de la Tierra que orbite en la zona de habitabilidad de otra estrella. Ya se ha dado este primer paso.

“Este es el primer planeta con una masa similar a la de la Tierra encontrado alrededor de una estrella de tipo Sol. Orbita muy cerca de su estrella y debe hacer demasiado calor para albergar vida tal y como la conocemos”, añade Stéphane Udry (Observatorio de Ginebra), coautor del artículo y miembro del equipo, “pero es posible que forme parte de un sistema en el que haya más planetas. Otros resultados de HARPS y nuevos descubrimientos de Kepler, muestran claramente que la mayor parte de los planetas de baja masa se encuentran en este tipo de sistemas”.

“Este resultado representa un gran paso adelante hacia la detección de un planeta gemelo a la Tierra en las inmediatas vecindades del Sol. ¡Vivimos tiempos emocionantes!”, concluye Xavier Dumusque. (Fuente: ESO)

martes, 16 de octubre de 2012

Está la chatarra espacial cerca del umbral de una multiplicación exponencial automática?

Al igual que una colisión entre dos vehículos en una autopista con tráfico muy denso puede provocar una colisión en cadena entre muchos otros vehículos, podrían ser destrozados muchos satélites en un periodo de tiempo relativamente corto si la abundancia de chatarra espacial supera el Umbral de Kessler. Éste es el umbral más allá del cual la densidad de objetos en las franjas orbitales más usadas se vuelve tan alta que las colisiones entre objetos podrían causar a su vez una cascada exponencialmente creciente de otras colisiones, al fragmentarse cada objeto impactado en muchos otros objetos.

Gráfico de la presencia de chatarra espacial hasta la órbita geosincrónica (unos 36.000 kilómetros de altura).


En órbita a la Tierra, giran cientos de satélites activos, así como decenas de miles de pedazos de "basura espacial" compuesta por satélites fuera de servicio o sus fragmentos, restos de cohetes impulsores y hasta herramientas perdidas por astronautas. Esa multitud de objetos variopintos es más comparable a metralla que a simple basura. Al desplazarse a unos 30.000 kilómetros por hora, esos pedazos se están moviendo aproximadamente diez veces más rápido que la más veloz de las balas en la Tierra. Y las balas, pese al mucho daño que pueden hacer, no son objetos especialmente grandes ni pesados.

La amenaza de la chatarra espacial se convirtió en noticia de primera plana en 2009, cuando un satélite ruso fuera de servicio y un satélite estadounidense de comunicaciones de propiedad privada colisionaron cerca del Polo Norte. El incidente produjo nubes de escombros que rápidamente se unieron al peligroso desfile de basura orbital, aumentando la posibilidad de futuros accidentes.

El envío de satélites al espacio sigue creciendo año tras año, conforme crece el número de países y empresas envueltos en las actividades orbitales, por lo que la amenaza de la chatarra o metralla espacial no va a menguar por sí solo.

Objetos del tamaño de una bala pueden infligir daños masivos a la nave contra la que impacten si lo hacen a las velocidades espaciales típicas, del orden de varios kilómetros por segundo o más. Por eso, la chatarra espacial constituye una amenaza potencial para las vidas de los astronautas.

E incluso en el caso de que esos fragmentos de basura sólo impacten contra satélites, dejarlos de repente fuera de servicio puede acarrear cuantiosos problemas

Bastantes de los satélites que están en servicio en órbita a la Tierra son eslabones vitales en la transmisión de datos, voz e imágenes por todo el mundo. Algunos satélites ayudan a conectar a las personas en regiones remotas, y otros ayudan a navegar a buques, aeronaves y vehículos terrestres. Los satélites también ayudan a hacer progresos en diversas líneas de investigación científica, gracias a que proporcionan datos críticos sobre la atmósfera, el mar y la tierra. Y tampoco podemos olvidar que la función principal de cerca de una cuarta parte de todos los satélites es apoyar a los sistemas de defensa de diversas naciones del mundo; un impacto contra uno de tales satélites en un momento de gran tensión internacional podría despertar sospechas de un ataque intencionado y empeorar las cosas, un peligro que fue típico durante la Guerra Fría.

Es urgente, por tanto, evitar que la proliferación de chatarra espacial alcance el umbral de Kessler. No basta con limitarse a hacer un seguimiento preciso de la trayectoria de cada pedazo de chatarra espacial. Si la chatarra espacial sigue creciendo y no se hace nada por evitarlo, tarde o temprano se llegará al tan temido umbral de Kessler. Eso podría ocurrir antes de lo previsto si se produjera alguna catástrofe de gran magnitud, con la liberación de mucha "metralla", en una franja orbital de gran tráfico.

A fin de reducir la amenaza de la chatarra orbital y asegurar que nunca se llegue al umbral de Kessler, ya se trabaja en métodos para limpiar de basura espacial las franjas orbitales más problemáticas.

Uno de ellos, propuesto en 2010, y sobre el cual ya dimos entonces la noticia desde NCYT de Amazings, es el sistema denominado GOLD (por las siglas del inglés "Gossamer Orbit Lowering Device"), diseñado por la empresa Global Aerospace Corporation, en Altadena, California. Con este sistema, sería posible la eliminación segura y eficiente de los objetos espaciales peligrosos que circulan por órbitas terrestres bajas. El GOLD se vale de un gran globo fabricado con un material ultradelgado. Una vez hinchado, el globo aumenta la resistencia aerodinámica al avance en un factor de varios centenares. Este gran roce contra la exigua masa de aire presente en las órbitas bajas es suficiente para hacer perder velocidad al objeto inservible y provocar su pérdida progresiva de altura. La masa cada vez más densa de aire con la que se encuentra el objeto acaba calentándolo hasta incinerarlo. Usando el sistema GOLD, será posible que objetos que habrían permanecido en órbita durante siglos reentren a la atmósfera terrestre en cuestión de meses.
El material del globo del sistema GOLD es más delgado y más ligero que el film de plástico transparente para envolver bocadillos. Se necesita una cantidad muy pequeña de gas para inflarlo en el vacío casi perfecto del espacio. El sistema es capaz de seguir funcionando pese a las múltiples perforaciones que inevitablemente debe sufrir todo objeto de su tamaño expuesto a micrometeoritos o a partículas diminutas de basura espacial. A pesar de estos agujeros, la tasa total de fuga de gas será muy pequeña. El sistema de presurización podrá compensar muy fácilmente el ritmo de la fuga. En el caso muy poco probable de que el globo colisione contra un objeto grande, eso no provocará que el objeto grande se rompa en fragmentos, más difíciles de vigilar debido a su número. Por lo tanto, el funcionamiento de GOLD en sí mismo no puede empeorar el tráfico descontrolado de pedazos de chatarra orbital, como por desgracia sí podría ser el caso con algunos métodos alternativos que otros investigadores han sugerido.

Aunque el globo cuando se infla puede ser del tamaño de un estadio deportivo (unos 100 metros de diámetro), su "piel" es tan delgada que, deshinchado, el globo puede plegarse y guardarse en un espacio sorprendentemente pequeño (dentro de una maleta de tamaño medio). Gracias a ello, instalarlo en vehículos espaciales o etapas superiores de cohetes antes del lanzamiento no acarrea un costo importante en combustible extra para trasladar al espacio ese peso extra.

Cuando los vehículos equipados con el sistema GOLD lleguen al final de su misión, se activará el despliegue del globo. Por otra parte, el sistema GOLD también podría ser amarrado a grandes bloques de chatarra ya en órbita, mediante el uso de un robot orbital. En el caso de objetos grandes y densos que puedan ser capaces de resistir lo suficiente la reentrada como para impactar contra la superficie terrestre y constituir un peligro para personas o bienes, el GOLD puede ser utilizado para dirigir su reentrada de manera segura, haciendo que caigan en un sector poco transitado de un océano.

Otra técnica prometedora para deshacerse de la chatarra espacial más peligrosa es la desarrollada por un equipo de ingenieros de la Universidad de Strathclyde en Glasgow, Escocia, Reino Unido. Usando una flota de satélites relativamente pequeños, equipados con proyectores de rayos láser energizados mediante energía solar, podría ser factible retirar chatarra espacial. Esos proyectores láser que estarían ubicados en el espacio podrían ser empleados para hacer descender un poco la órbita original del pedazo de chatarra elegido. Esa pérdida discreta pero decisiva de altitud haría al objeto más vulnerable al roce de la capa alta de la atmósfera, de tal modo que este roce acabaría precipitando la reentrada del objeto a la atmósfera, siendo éste pulverizado en ella.



viernes, 12 de octubre de 2012

Nobel de Física 2012 para el control de las partículas en el mundo cuántico

Los científicos Serge Haroche, profesor del Collège de France and Ecole Normale Supérieure en Paris (Francia), y David J. Wineland, investigador del National Institute of Standards and Technology (NIST) y la Universidad de Colorado Boulder (EEUU), son los ganadores del Premio Nobel de Física 2012.

Así lo ha anunciado la Real Academia Sueca de las Ciencias, quien reconoce los trabajos que han desarrollado los dos galardonados en el campo de la física cuántica. En concreto, han inventado y desarrollado métodos para medir y manipular partículas individuales sin alterar su naturaleza cuántica.

Las reglas de la física clásica dejan de funcionar en la escala de las partículas individuales de luz o materia. Es entonces cuando entra en juego la física cuántica, pero las partículas individuales no son fáciles de aislar de su entorno y enseguida pierden sus misteriosas propiedades cuánticas según interaccionan con el exterior.

Hasta ahora estos fenómenos no se podían observar directamente, y sólo se formulaban planteamientos teóricos. Pero los trabajos de los dos galardonados han demostrado con ingeniosas técnicas de laboratorio que se pueden cuantificar y controlar los frágiles estados cuánticos.

Wineland atrapa iones –átomos cargados eléctricamente–, controlándolos y midiéndolos con partículas de luz, con fotones. Sin embargo, Haroche utiliza el enfoque opuesto: manipula y mide fotones mediante el envío de átomos a través de una trampa.

El investigador francés, que nació el 11 de septiembre de 1944 en Casablanca (actual Marruecos), es principalmente conocido por demostrar la ‘decoherencia cuántica’ (explica la mecánica que ocurre a escala ‘micro’ en física cuántica). Haroche obtuvo su licenciatura en la Universidad Pierre y Marie Curie de París en 1971.

Por su parte, el estadounidense Wineland, que nació en Milwaukee en 1944 y se licenció en la Universidad de Harvard en 1970, ha desarrollado avances relevantes en óptica. Sus líneas de investigación se han centrado en el enfriamiento láser de partículas iónicas y en el uso de iones atrapados para implementar operaciones de computación cuántica.

Entre sus múltiples premios destaca la medalla Benjamín Franklin en Física que recibió en 2010 de manos del Instituto Franklin, junto al español Juan Ignacio Cirac y Peter Zoller.

Ambos laureados trabajan en el campo de la óptica cuántica estudiando la interacción entre la luz y la materia, un ámbito que ha progresado de forma considerable desde mediados de los 80. Los métodos innovadores que han introducido han permitido avanzar hacia la construcción de un nuevo tipo de computadora cuántica súper rápida que puede revolucionar la informática del futuro.

Además, sus investigaciones también han ayudado a la construcción de relojes extremadamente precisos, que podrían convertirse en la base de un nuevo estándar de tiempo, con una precisión cien veces superior a los actuales relojes de cesio.

Haroche y Wineland compartirán, a partes iguales, los 8 millones de coronas suecas con los que la Real Academia Sueca de las Ciencias dota al Nobel de Física. (Fuente: SINC)

miércoles, 10 de octubre de 2012

La mejor imagen de la nebulosa Jones-

La Fundación Descubre presenta la que tal vez sea la mejor fotografía de la nebulosa planetaria PK164+31.1 disponible hasta la fecha. También designada como Jones-Emberson 1, está situada en el hemisferio boreal, hacia la dirección de la discreta constelación del Lince (Lynx).

Es poco conocida porque resulta difícil de observar con telescopio, debido a su bajo brillo superficial y a su moderado tamaño aparente. Sobre el cielo ocupa una extensión similar a la que cubriría una moneda de un euro colocada a unos quince metros del ojo, o seis minutos de arco. Sin embargo, se trata de un objeto celeste muy atractivo para la astrofotografía.


Las nebulosas planetarias representan el proceso que pone fin a la existencia de las estrellas ligeras (con masas por debajo de unas ocho veces la del Sol). Durante la crisis energética final, los astros de este tipo expulsan al espacio interestelar sus capas externas, que conforman la nebulosa observable. Este material expelido brilla porque el cadáver estelar que queda en el centro, una estrella enana blanca, ioniza e ilumina los gases. El Sol experimentará un proceso similar dentro de unos cinco mil millones de años.

La producción de esta imagen ha sido posible gracias a la calidad del cielo de Calar Alto, unida a la de sus instrumentos, y vinculada a una planificación cuidadosa de las observaciones y a un procesado posterior de los datos muy riguroso. La calidad de la imagen pone de manifiesto multitud de detalles estructurales en el frente de ionización de la nebulosa.

Asimismo, el campo de visión aparece repleto de estrellas de nuestra galaxia situadas en primer plano, sobre un telón de fondo conformado por una cantidad enorme de galaxias remotas, algunas de las cuales llegan a atisbarse, incluso, a través de los retazos de gas de la propia nebulosa planetaria.

PK164+31.1 se encuentra a unos 1.600 años-luz de distancia. Esto significa que su pequeño tamaño aparente en realidad corresponde a nada menos que unos tres años luz de diámetro, unas dimensiones comparables a la distancia que separa al Sol de la siguiente estrella, alfa Centauri.

“Dicho de otro modo, si alguien obtuviera una fotografía del Sol desde esta nebulosa, tanto nuestra estrella como alfa Centauri cabrían cómodamente en el campo de visión de la toma”, afirma David Galadí-Enríquez, astrónomo del Observatorio Astronómico de Calar Alto (España) y director de la estrategia andaluza de divulgación de la astronomía puesta en marcha por la Fundación Descubre.

La imagen ha sido producida en el marco de la colaboración entre la Fundación Descubre, el Centro Astronómico Hispano Alemán (CAHA), la Escuela Documentalista de Astrofotografía (DSA) y el Observatorio Astronómico de la Universidad de Valencia (OAUV). Los datos proceden del telescopio reflector Zeiss de 1,23 m del Observatorio de Calar Alto y se han procesado con el programa PixInsight.

La imagen combina datos obtenidos a través de los filtros R, G, B y H-alfa, con un tiempo total de exposición de 28 horas (5 horas y 20 minutos en cada uno de los filtros RGB y 12 horas en H-alfa). El campo de visión es de 15,5 minutos de arco. El norte está arriba y el este a la izquierda. (Fuente: Fundación Descubre)

viernes, 5 de octubre de 2012

Una curiosa capa fría en la atmósfera de Venus

La sonda europea Venus Express ha descubierto una región sorprendentemente fría en las capas más altas de la atmósfera del planeta, en las que la temperatura podría ser lo suficientemente baja como para que se congele el dióxido de carbono, formando hielo o nieve.

Venus es famoso por su densa atmósfera de dióxido de carbono y por las altas temperaturas que ésta provoca sobre la superficie del planeta. Por ello, con frecuencia se le presenta como el hermano inhóspito de la Tierra.

En un nuevo estudio basado en los datos recogidos por la sonda europea Venus Express a lo largo de cinco años de observaciones, un grupo de científicos ha descubierto una capa muy fría en la atmósfera del planeta, a unos 125 kilómetros sobre su superficie, en la que se alcanzan temperaturas de -175°C.

Esta inusual capa es mucho más fría que cualquier región de la atmósfera terrestre, por poner un ejemplo, y eso a pesar de que Venus se encuentra mucho más cerca del Sol que nuestro planeta.

Este descubrimiento se realizó mientras se medía cómo se filtraba la luz del Sol a través de la atmósfera de Venus, para así determinar la concentración de moléculas de dióxido de carbono a distintas altitudes a lo largo del terminador – la línea de separación entre la parte iluminada y la parte en sombra del planeta.

Al combinar las medidas de la concentración de dióxido de carbono con los datos de la presión atmosférica, los científicos fueron capaces de derivar el perfil de temperaturas de la atmósfera de Venus.

“Como a una determinada altitud la temperatura cae por debajo del punto de fusión del dióxido de carbono, sospechamos que se podría llegar a formar nieve carbónica en esta región de la atmósfera venusiana”, explica Arnaud Mahieux, del Instituto Belga de Aeronomía Espacial y autor principal del artículo que presenta estos resultados en el Journal of Geophysical Research.

Las nubes de partículas de nieve o hielo de dióxido de carbono tendrían que ser muy reflectantes, y podrían llegar a crear capas más brillantes que la propia luz solar.

No obstante, aunque Venus Express haya observado regiones muy brillantes en la atmósfera de Venus que podrían indicar la presencia de hielo, también podrían ser el resultado de otras perturbaciones atmosféricas, por lo que de momento tenemos que ser prudentes”, puntualiza Mahieux.

Este estudio también descubrió que esta capa fría a lo largo del terminador se encuentra emparedada entre dos capas relativamente más cálidas.

“Los perfiles de temperaturas en la cálida cara iluminada del planeta y en la fría cara que se encuentra a la sombra son extremadamente diferentes a partir de los 120 kilómetros de altitud. El terminador es una región de transición, afectada por las condiciones a ambos lados”.

“A lo largo del terminador, la cara en sombra podría jugar un papel importante a una determinada altitud, y la cara iluminada un papel incluso mayor a otras altitudes”.

Los perfiles de temperaturas obtenidos a partir de otros conjuntos de datos de Venus Express, entre los que se encuentran los recogidos durante el tránsito de Venus del pasado mes de junio, concuerdan con estos resultados.

Los modelos matemáticos están de acuerdo con los perfiles observados, pero para confirmar esta hipótesis será necesario examinar el papel que juegan los otros compuestos químicos presentes en la atmósfera de Venus, tales como el monóxido de carbono, el oxígeno o el nitrógeno. En las capas más altas de la atmósfera de Venus estos compuestos son incluso más abundantes que el dióxido de carbono.

“Este descubrimiento todavía es muy reciente, y aún tenemos que pensar y comprender cuáles podrían ser sus repercusiones”, explica Håkan Svedhem, científico del proyecto Venus Express para la ESA.

“Pero sin duda es algo muy especial, ya que no tenemos este tipo de perfiles de temperaturas a lo largo del terminador de la Tierra o de Marte, cuyas atmósferas presentan unas composiciones químicas y condiciones térmicas muy diferentes”.  (Fuente: ESA)

miércoles, 3 de octubre de 2012

Confirman que la energía oscura existe

La energía oscura, una fuerza misteriosa propuesta desde el ámbito teórico como la causa de que la expansión del universo se esté acelerando, existe, o por lo menos esa es la conclusión a la que ha llegado un equipo de astrónomos de la Universidad de Portsmouth en el Reino Unido y la Universidad Ludwig-Maximilian en Múnich, Alemania.


Después de una investigación de dos años dirigida por Tommaso Giannantonio y Robert Crittenden, el equipo de científicos ha determinado que las probabilidades de que la energía oscura exista son del 99,996 por ciento.

Esto sin embargo no ayuda a esclarecer qué es la energía oscura. La comunidad científica sigue sin tener idea de la naturaleza de esta misteriosa fuerza, aunque algunos teóricos creen que podría tratarse de la manifestación de la constante cosmológica de Einstein, que asigna energía al espacio, incluso cuando está libre de materia y radiación.

Se cree que hoy en día la materia normal constituye alrededor de un 4 por ciento del universo, la materia oscura un 23 por ciento, y la energía oscura aproximadamente el 73 por ciento restante.


La energía oscura actúa contra la gravedad, de un modo que, hasta cierto punto haría que se la pudiera describir como "antigravedad", y parece que comenzó a actuar de manera dominante en el cosmos hace unos 6.000 millones de años, cuando el universo tenía cerca de la mitad de la edad que tiene ahora. Hasta aquella época, el universo se había estado expandiendo a una velocidad cada vez menor, debido, esencialmente, al efecto de la atracción gravitatoria ejercida mutuamente por todas las concentraciones de materia existentes en él. Sin embargo, cuando la expansión del universo separó lo suficiente esas acumulaciones de materia, el universo experimentó un cambio fundamental en su naturaleza, y la energía oscura empezó a ejercer una influencia mayor que la de la gravedad. En aquel momento decisivo de ese enigmático pulso entre titanes, la expansión del universo comenzó a acelerarse.

A diferencia de la energía como la conocemos (y medimos), la energía oscura no parece actuar a través de ninguna de las fuerzas fundamentales de la naturaleza. No puede ser observada directamente, por ejemplo a través de la luz u otras manifestaciones de la fuerza electromagnética. Las evidencias de la energía oscura son indirectas.

lunes, 1 de octubre de 2012

El Hubble retrata a una galaxia espiral cubierta de polvo

El Telescopio Espacial NASA/ESA Hubble nos vuelve a asombrar con una imagen de una galaxia cercana. Esta semana nos acercó a la NGC 4183, vista aquí sobre un hermoso telón de fondo salpicado por otras galaxias más lejanas.

Esta galaxia se encuentra a unos 55 millones de años luz de nuestro Sol y tiene una extensión de cerca de 80.000 años luz, un poco más pequeña que la Vía Láctea. La NGC 4183 pertenece al grupo de la Osa Mayor y se ubica en la constelación de Canes Venatici (‘Los Perros Cazadores’ o ‘Los Lebreles’).

La galaxia NGC 4183 presenta una estructura espiral abierta y un núcleo apenas perceptible. Desafortunadamente, desde la Tierra la vemos de canto, lo que nos impide apreciar sus brazos espirales en toda su magnitud. No obstante, esta imagen nos muestra su disco galáctico con un asombroso nivel de detalle.


Los discos de las galaxias están compuestos principalmente de polvo, gas y estrellas. En esta imagen podemos distinguir unos intrincados filamentos de polvo sobre el plano galáctico que bloquean parcialmente la luz emitida por el núcleo de la galaxia.

Recientemente se ha presentado una hipótesis que sugiere que la NGC 4183 podría tener una estructura barrada. Las ‘barras’ galácticas canalizan el gas desde los brazos espirales hacia el centro de la galaxia, acelerando la tasa de formación de estrellas en esta región.

La galaxia NGC 4183 fue observada por primera vez el 14 de enero de 1778 por el astrónomo británico William Herschel.

Esta fotografía es una composición de las imágenes tomadas en las bandas de la luz visible y del infrarrojo por el Canal de Gran Angular (WFC) de la Cámara Avanzada para Sondeos (ACS) del Telescopio Espacial Hubble. El campo de visión abarca unos 3.4 minutos de arco.

Esta foto también ha sido seleccionada como la Imagen de la Semana del Telescopio Espacial Hubble. (Fuente: ESA)