miércoles, 29 de agosto de 2012

Observaciones de dos enanas blancas ponen a prueba la teoría de la relatividad

Un equipo internacional, en el que han participado astrónomos del Instituto de Astrofísica de Canarias (IAC) y el Gran Telescopio CANARIAS (GTC), ha puesto a prueba la teoría de la relatividad general de Einstein al observar la reducción progresiva de la órbita de un singular par de estrellas: las enanas blancas del sistema binario J0651. Estos dos objetos, remanentes de estrellas como el Sol que ya han agotado su combustible nuclear, completan en la actualidad una órbita cada 13 minutos, con grandes aceleraciones y velocidades que llegan a alcanzar más de 600 kilómetros por segundo, según acaba de publicar el grupo de investigación en la revista Astrophysical Journal Letters.

De acuerdo con la teoría de la relatividad general de Einstein, las aceleraciones de estas estrellas en su movimiento orbital causan ondas en el tejido del espacio-tiempo, que se denominan ondas gravitacionales. Aunque todavía no se han observado directamente, la emisión de estas ondas resta energía al sistema binario, lo que provoca que las enanas blancas se acerquen progresivamente la una a la otra y orbiten cada vez más rápido.

La teoría de la relatividad predice que la órbita de este sistema binario se reduce en unos 0,25 milisegundos cada año. La confirmación de que las estrellas están acercándose cada vez más viene dada por la comparación de las medidas tomadas en 2011, cuando el equipo de astrofísicos descubrió este sistema, con las tomadas en la actualidad.

El GTC, el mayor telescopio óptico infrarrojo del mundo, con un espejo primario de 10,4 metros, ubicado en el Observatorio del Roque de los Muchachos en La Palma, proporcionó el conjunto de datos con la cadencia más rápida de estos objetos. "Gracias al GTC, hemos logrado tomar cientos de imágenes seguidas de este interesante sistema sin perder un segundo", comenta Carlos Allende Prieto, investigador del IAC y uno de los autores del estudio.

Para Antonio Cabrera Lavers, astrónomo del GTC y coautor de la investigación: "Estamos ante uno de esos casos en los que tenemos la oportunidad de utilizar telescopios para poner a prueba nuestra comprensión de los aspectos más fundamentales de la física".

J0651 es el quinto sistema binario conocido con un periodo orbital de menos de 15 minutos. En los otros cuatro casos, no obstante, se produce transferencia de masa de una de las estrellas a la otra, lo que causa variaciones de brillo y complica las observaciones de la reducción del periodo orbital, así como su interpretación en términos de ondas gravitacionales.

Este sistema binario es también peculiar en cuanto a su orientación respecto a la Tierra, ya que el plano orbital está alineado con nuestra línea de visión. "Cada seis minutos una de las estrellas en J0651 eclipsa a la otra, lo que proporciona un reloj de extrema precisión a 3.000 años luz", dice el estudiante de doctorado de la Universidad de Tejas, en Austin (EE UU), y primer autor del artículo, J.J. Hermes. "Los eclipses en este momento tienen lugar unos seis segundos antes de lo esperado a partir de las medidas de hace un año", señala el profesor de la Universidad de Oklahoma y miembro del equipo, Mukremin Kilic.

Los resultados de este estudio han sido posibles gracias a las más de 200 horas de observaciones, además de con el GTC, con el telescopio de 2,1 metros Otto Stuve, en el Observatorio McDonald en Tejas, con el telescopio Géminis de 8,2 metros, en Hawái, y con el telescopio de 3,5 metros del Observatorio Apache Point, en Nuevo Méjico, todos ubicados en EE UU.

Detectar directamente las ondas gravitacionales es extremadamente difícil. En concreto, medir el efecto de las ondas gravitacionales producidas por J0651 desde el sistema solar requeriría varios satélites situados a millones de kilómetros y comunicados por láseres. Aunque los físicos llevan años planeando un sistema de este tipo, aún no hay ninguna misión espacial definida y con financiación de estas características.

"De este modo tenemos una vía más fácil, si bien indirecta, de detectar los efectos de las ondas gravitacionales", añade Allende Prieto. (Foto: IAC)

viernes, 24 de agosto de 2012

Fobos en todo su esplendor

Para celebrar el 135 aniversario de su descubrimiento, la sonda Mars Express de la ESA nos muestra a Fobos, la mayor luna de Marte, en 3D y con un fantástico nivel de detalle. El ingenio europeo tomó esta imagen cuando se encontraba a menos de 100 km de la superficie de Fobos.

Este espectacular anaglifo es muy diferente del punto apenas perceptible que el astrónomo Asaph Hall fue capaz de vislumbrar en 1877, cuando estudiaba el Planeta Rojo a través del telescopio de 66 cm del Observatorio Naval de los Estados Unidos. Hall descubrió la luna más pequeña y más alejada de Marte, Deimos, el 12 de agosto de aquel año, y la de mayor tamaño, Fobos, seis días más tarde.



Poco más de un siglo después, un satélite en órbita a Marte nos permite estudiar la superficie de Fobos con un nivel de detalle sin precedentes.

A la derecha de la imagen, parece como si le hubiesen dado un mordisco a Fobos – se trata del gran cráter de impacto Stickney, visto de lado. Este cráter fue bautizado con el nombre de soltera de la mujer de Hall.

Sobre la superficie de Fobos se puede distinguir una serie de surcos que parece emanar del cráter Stickney, extendiéndose a lo largo de los casi 27 kilómetros de diámetro de esta luna. Al principio se pensaba que estaban relacionados con el cráter de impacto, pero una teoría más reciente sugiere que se podrían haber formado cuando Fobos atravesó una nube de escombros arrancados de la superficie de Marte por el impacto de asteroides contra la superficie del planeta.


De todas las lunas de nuestro Sistema Solar, Fobos es la que se encuentra más cerca de su planeta, orbitando a tan sólo 6000 km de la superficie de Marte. Este hecho hace que complete una vuelta alrededor del Planeta Rojo más rápido de lo que tarda éste en dar una vuelta sobre sí mismo. Vista desde la superficie de Marte, Fobos sale y se pone sobre el horizonte dos veces al día.

La órbita de Fobos está decayendo, y en unos 50 millones de años podría llegar a desintegrarse, dando lugar a una nube de escombros que terminaría precipitándose sobre la superficie de Marte. (Fuente: ESA)

martes, 21 de agosto de 2012

El LHC se adentra en la materia del universo primigenio

En los comienzos del universo, justo después del Big Bang, existió un ‘plasma de quarks y gluones’, dos partículas confinadas hoy en la materia pero que entonces vagaban libremente. Ahora los científicos han recreado aquellas condiciones en el Gran Colisionador de Hadrones del CERN y esta semana presentan los últimos datos en Washington (EEUU) durante el congreso Quark Matter 2012.

Las colisiones de iones pesados en el LHC están ayudando a comprender mejor el estado de la materia en los primeros instantes del universo.  Los experimentos ALICE, CMS y ATLAS del gran colisionador trabajaron con iones de plomo durante 4 semanas en 2011 y obtuvieron una cantidad de datos 20 veces superior a la de 2010.

Ahora, los resultados de unos mil millones de colisiones se presentan en el congreso Quark Matter 2012, que entre el 13 y 18 de agosto se celebra en Washington (EEUU). Los investigadores informarán sobre la materia más densa y más caliente jamás estudiada en el laboratorio, unas 100.000 veces más caliente que el interior del Sol y más densa que una estrella de neutrones.

En concreto, los científicos han tomado nuevas medidas sobre el denominado ‘plasma de quarks y gluones’, un estado de la materia generado justo después del Big Bang y en el que vagaban libremente los quarks (hoy uno de los constituyentes fundamentales de la materia) y los gluones (portadores de la interacción nuclear fuerte -una de las cuatro fuerzas fundamentales- y responsables de que los quarks se mantengan unidos formando protones -dos quarks ‘arriba’ y uno ‘abajo’- y neutrones -dos quarks ‘abajo’ y uno ‘arriba’-).

"El campo de la física de iones pesados ​​es fundamental para probar las propiedades de la materia en el universo primordial, una de las cuestiones clave de la física fundamental que el LHC puede abordar”, dice el director general del CERN, Rolf Heuer. “Aquí los físicos no solo investigan la recientemente descubierta partícula tipo Higgs, también muchos otros fenómenos importantes mediante colisiones protón-protón y plomo-plomo".

Los científicos de ALICE van a aportar gran cantidad de nuevos resultados en todos los aspectos de la evolución en el espacio y el tiempo de esa materia de alta densidad. Algunos de los estudios que despiertan mayor interés son los relacionados con las partículas ‘encantadas’, que contienen un quark encanto (charm, en inglés) o anti-encanto.
Colisión de iones pesados registrada por el experimento ALICE  Imagen: CERN


Estos charm quarks, que son cien veces más pesados que los quarks arriba y abajo que forman la materia normal, se desaceleran cuando pasan por el plasma de quarks y gluones, lo que ofrece a los científicos una herramienta única para investigar sus propiedades.

Físicos de esta colaboración explicarán que el flujo en el plasma es tan fuerte que las pesadas partículas ‘encantadas’ ​​son arrastradas por ella. El experimento también ha observado indicios de un fenómeno conocido como ‘termalización’, en el que se combina un quark encanto con su anti-encanto para formar ‘charmonium’, cuya disociación inicial se relaciona con la formación del plasma de quarks y gluones.

Por su parte, el experimento CMS también ha observado signos claros de la supresión de estados quarkonium, constituidos por un quark y su correspondiente antiquark. "CMS presenta importantes resultados nuevos con iones pesados no sólo en la supresión de quarkonium, sino también en las propiedades del material intermedio y en una variedad de estudios de jet quenching (enfriamiento o frenado de los jets)”, dice Joseph Incandela, el portavoz de CMS.

Cuando los quarks y los gluones se alejan del punto de colisión se forman unos chorros (jets, en inglés) de partículas. En las colisiones de protones, los jets suelen aparecer en parejas, en direcciones opuestas y energías similares. Sin embargo, en las colisiones de iones pesados los chorros interactúan con las tumultuosas condiciones del medio denso y caliente formado por el plasma de quarks y gluones como el del universo primigenio.

Esto produce una señal muy característica conocida como jet quenching, en la que la energía de los chorros se puede degradar mucho, lo que indica que se producen interacciones con el medio. Así, el enfriamiento del jet es una poderosa herramienta para estudiar el comportamiento del plasma en detalle.

La colaboración ATLAS también informará sobre los últimos avances en el conocimiento de este fenómeno, incluyendo un estudio de alta precisión de cómo los chorros se fragmentan en materia, y en las correlaciones entre los jets y los bosones electrodébiles. Los resultados se complementan con otros también de interés, como novedades sobre el flujo del plasma.

"Hemos entrado en una nueva fase en la que no sólo observamos el fenómeno del plasma de quarks y gluones, sino que también podemos hacer mediciones de alta precisión usando variedad de sondas", dice  Fabiola Gianotti, portavoz de ATLAS, que concluye: “Todos estos estudios contribuirán significativamente a nuestra comprensión del universo temprano". (Fuente SINC)

sábado, 18 de agosto de 2012

El espectáculo de las auroras boreales vuelve este verano a tu casa

Sólo desde los casquetes polares de nuestro planeta se observan las auroras boreales y australes, un fenómeno astronómico espectacular que aparece ante nuestros ojos como cortinas luminosas de tonalidades diversas y cambiantes. Pero este verano trae la oportunidad de observar las auroras boreales (aquellas que se ven en el hemisferio norte) en directo desde casa, con una conexión a Internet. El momento para la observación es propicio: en la actualidad existe un aumento de la actividad solar que produce las auroras y que alcanzará su máximo a mediados de 2013.

Del 20 al 29 de agosto la expedición Shelios 2012, coordinada por el investigador del Instituto de Astrofísica de Canarias (IAC) Miquel Serra-Ricart, observará las auroras boreales desde el sur de Groenlandia, en concreto, desde los alrededores del glaciar de  Qaleraliq (longitud=46,6791W; latitud=60,9896N). Miembros del proyecto europeo GLORIA (GLObal Robotic-telescopes Intelligent Array, Red Global de Telescopios Robóticos) se unirán a la expedición para realizar una retransmisión en directo del fenómeno. Vídeos e imágenes de las auroras serán retransmitidos en directo por Internet (en colaboración con el portal sky-live.tv) desde Groenlandia. La emisión será bilingüe en castellano e inglés.

La expedición Shelios 2011 que, con idéntico objetivo, partió el año pasado hacia Groenlandia, encontró una menor actividad de auroras que la esperada, debido al aparente retraso del máximo de actividad solar. Esto produjo que, en esa ocasión, no se pudiera retransmitir el fenómeno en directo, aunque sí ofrecer a los espectadores de todo el mundo impresionantes imágenes y videos de las auroras observadas en diferentes momentos de la expedición. En esta ocasión, se espera una mayor actividad de auroras, lo que aumentará aún más el atractivo de las retransmisiones.


GLORIA es un innovador y ambicioso proyecto de ciencia ciudadana liderado por la Universidad Politécnica de Madrid y con la participación de 13 socios de 8 países, que darán acceso libre y gratuito a una red de telescopios robóticos a través de una interfaz Web. El Instituto de Astrofísica de Canarias (IAC) participa en el proyecto a través del Telescopio Abierto Divulgación (TAD), un conjunto de telescopios robóticos situados en el Observatorio del Teide, en Tenerife. La retransmisión de las auroras será la segunda (la primera fue el tránsito de Venus) de una serie de retransmisiones en directo de eventos astronómicos que ofrecerá GLORIA para promover la Astronomía y Ciencia Ciudadana entre el público. Al mismo tiempo, se han desarrollado Actividades Educativas para involucrar a los estudiantes de secundaria. La propuesta para las Auroras Boreales es que los estudiantes determinen la distancia a la que se forman las Auroras a partir de observaciones simultáneas realizadas desde dos puntos separados una distancia de 1km.
Se realizará una conexión diaria entre el 24 y 28 de Agosto, de 01:00 a 01:10 UT, (3:00 - 3:10 Madrid). Para mantener el portal actualizado cada noche de 00:30 - 01:30 UT (2:30 - 3:30 Madrid), y con una frecuencia de un minuto se refrescará la imagen del cielo estrellado al tiempo que se ofrece un vídeo en directo del movimiento de las auroras. Todas las imágenes recogidas estarán inmediatamente disponibles para su uso en las actividades educativas.

Las auroras polares se producen cuando partículas muy energéticas originadas en el Sol (viento solar) alcanzan la atmósfera de la Tierra. La entrada de estas partículas está gobernada por el campo magnético terrestre y por ello sólo pueden penetrar por el Polo Norte (auroras boreales) y el Polo Sur (auroras australes). “La emisión de luz se produce en la alta atmósfera, entre 100 y 400 kilómetros, y se debe a los choques del viento solar, compuesto esencialmente por electrones, con átomos de  oxígeno, lo que origina los tonos verdosos que son los más comunes”, explica Serra-Ricart. En el año 2000 se detectaron intensas auroras, al coincidir con un periodo de máxima actividad solar.

Durante los máximos solares hay un aumento del viento solar y, por tanto, crece el flujo de partículas elementales que al llegar a la Tierra son dirigidas hacia los polos magnéticos. La mejor zona para la observación de las auroras boreales se localiza en un círculo alrededor del Polo Norte magnético (entre 60 y 70 grados de latitud norte). Según el astrofísico del IAC, “debido a que el Polo Norte magnético no coincide con el Polo Norte geográfico y se encuentra situado al noroeste de Groenlandia, en concreto al norte de Canadá cerca de la isla Ellesmere, el sur de Groenlandia es una de las mejores plataformas de observación”.

“Es conocido que durante el máximo solar ocurrido en el año 1989, con intensas tormentas solares, varias ciudades del norte de los Estados Unidos y Canadá tuvieron graves problemas en el suministro eléctrico. También varios satélites sufrieron anomalías temporales en el transcurso de las citadas tormentas”, detalla Serra-Ricart.

La relación entre la actividad solar y el clima terrestre es un tema a debate en los últimos años. Hay indicios que hacen pensar que durante los mínimos de actividad solar la Tierra sufre un enfriamiento. Entre los años 1645 y 1715 se cree que existió un mínimo solar prolongado (el mínimo de Maunder) que provocó una pequeña edad de hielo en el planeta,  con efectos constatados en el norte de Europa. (Fuente: IAC)


martes, 14 de agosto de 2012

Un remolino azul en El Río

En esta nueva imagen, obtenida con el telescopio VLT (Very Large Telescope) de ESO, vemos la galaxia NGC 1187. Esta impresionante espiral se encuentra a unos 60 millones de años luz de nosotros, en la constelación de Eridanus (El Río). NGC 1187 ha albergado dos explosiones de supernova durante los últimos treinta años, la última en el año 2007. Esta imagen de la galaxia es la más precisa de las obtenidas hasta el momento.

La galaxia NGC 1187 se ve casi de frente en la nueva imagen del VLT, que nos muestra con claridad su estructura espiral. Pueden verse alrededor de media docena de brazos espirales prominentes, cada uno de los cuales contiene grandes cantidades de gas y polvo. Los rastros azulados de los brazos espirales indican la presencia de estrellas jóvenes nacidas de las nubes de gas interestelar.




Mirando hacia las zonas centrales, vemos cómo brilla el protuberante centro en tonos amarillos. Esta parte de la galaxia está compuesta, principalmente, de estrellas viejas, gas y polvo. En el caso de NGC 1187, más que un centro redondeado, hay una sutil estructura central en forma de barra. Se cree que esta característica forma barrada actúa como un mecanismo que canaliza el gas procedente de los brazos espirales hacia el centro, aumentando la formación estelar en esa zona.

En los alrededores de la galaxia, pueden verse muchas más galaxias más débiles y más distantes. Algunas incluso brillan a través del disco de NGC 1187. Sus tonos predominantemente rojizos contrastan con los cúmulos de estrellas azul pálido de los objetos más cercanos.

NGC 1187 parece una galaxia tranquila e inmutable, pero ha albergado dos explosiones de supernova desde 1982. Una supernova es una violenta explosión estelar, resultante de la muerte de una estrella masiva o de una enana blanca en un sistema binario. Las supernovas son uno de los fenómenos más energéticos del universo, y son tan brillantes que a menudo iluminan brevemente una galaxia al completo antes de desaparecer de nuestra vista durante semanas o meses. Durante este corto periodo de tiempo una supernova puede irradiar tanta energía como la que se estima que emitirá el Sol a lo largo de toda su vida.

En octubre de 1982, se descubrió la primera supernova en NGC 1187 — SN 1982R. Fue desde La Silla, un observatorio de ESO, y más recientemente, en 2007, el astrónomo aficionado Berto Monard, localizó desde Sudáfrica otra supernova en esta galaxia — SN 2007Y. Posteriormente, un equipo de astrónomos elaboró un detallado estudio y monitorizó SN 2007Y durante alrededor de un año utilizando numerosos telescopios. Esta nueva imagen de NGC 1187 fue creada a partir de observaciones obtenidas como parte de este estudio y la supernova puede verse, mucho después de su pico de brillo máximo, cerca del extremo inferior de la imagen.

Estos datos fueron obtenidos utilizando el instrumento FORS1, instalado en el Very Large Telescope de ESO, en el Observatorio Paranal, en Chile. (Fuente: ESO)

viernes, 10 de agosto de 2012

El mayor mapa del universo... en 3D y para todos

Después de realizar la mayor y más profunda fotografía del cielo nocturno captada hasta la fecha, tocaba ofrecer su versión 3D. La colaboración internacional Sloan Digital Sky Survey III (SDSS-III), que cuenta con la participación del Instituto de Astrofísica de Canarias (IAC), ha presentado el mayor mapa tridimensional de galaxias masivas y agujeros negros distantes. Es el inicio de un catálogo cartográfico del universo que proporcionará datos relevantes sobre dos grandes misterios de la astrofísica actual: la materia oscura y, sobre todo, la energía oscura, esa fuerza invisible que hace que el universo se expanda.

La colaboración ha hecho público también un video ilustrativo en el que se muestra un viaje simulado a través de parte del universo de galaxias observadas en el proyecto SDSS. La animación muestra cerca de 400.000 galaxias, en sus posiciones observadas y con imágenes reales de las mismas.

Como explica el investigador del IAC y profesor de la Universidad de La Laguna Ismael Pérez Fournon, este mapa es el resultado de la recolección e incorporación de nuevos datos a la fotografía que la colaboración compuso hace unos meses. Esta nueva información, basada en espectros obtenidos con el telescopio Sloan, ha permitido diseñar la pieza en 3D. "El mapa, al que puede acceder cualquier persona desde Internet, recopila el trabajo realizado por SDSS-III en sus dos primeros años de funcionamiento. Aunque los resultados son muy significativos, esperamos mucho más de este proyecto de seis años".

El astrofísico del IAC subraya el hecho de que los datos de SDSS-III no sólo serán útiles para la comunidad científica, sino también para educadores y aficionados a la astronomía. "La idea de la colaboración es crear un legado para el futuro, un catálogo de datos que pueda ser usado mucho tiempo después de que lo concluyamos. Es ciencia colaborativa en su máxima expresión", afirma.

 


El mapa 3D es la pieza clave de la novena publicación de datos que realiza la colaboración. Esta publicación, disponible en las páginas web http://www.sdss3.org/dr9 y http://skyserver.sdss3.org, incluye imágenes de 200 millones de galaxias y más de un millón de espectros. De estos, 540.000 corresponden a galaxias que, en su mayoría, no habían sido estudiadas previamente y que vemos tal y como eran cuando el universo tenía la mitad de su edad actual, que es aproximadamente 13.700 millones de años.

Los espectros ofrecen información relevante para la comunidad científica. Al analizar la luz que emiten las galaxias en diferentes longitudes de onda, los investigadores pueden comprobar cómo y cuánto se ha expandido el universo desde que la luz examinada abandonó la galaxia. Las imágenes combinadas con las citadas medidas sobre la expansión han permitido crear el mapa tridimensional.

El cartografiado en 3D incluye nueva información del proyecto BOSS, una parte de SDSS-III, que proyecta medir las posiciones de 1,5 millones de galaxias masivas mirando hacia atrás en el tiempo en los últimos 6.000 millones de años.

¿Por qué fijarse en galaxias masivas? Como explica el coordinador científico de SDSS-III en el IAC, Carlos Allende, el proyecto escogió estos objetos porque se ubican en los mismos lugares que otras galaxias más difíciles de detectar. "Mapear las galaxias grandes constituye una fórmula eficaz para mapear el resto de galaxias del universo lejano", apunta el científico.

BOSS también se plantea identificar en torno a 160.000 cuásares distribuidos por el universo en todas las épocas cósmicas. Según la opinión más asentada, podrían ser núcleos activos de galaxias o, lo que es lo mismo, agujeros negros gigantes alimentándose activamente de estrellas y de gas. Son, en cualquier caso, los objetos más brillantes del universo distante y su espectro ofrece una nueva forma de medir la distribución de materia en el universo, ya que muestran patrones que desvelan la materia gaseosa y oscura que hay entre cada cuásar y la Tierra.

En términos astrofísicos, mapear es en realidad retroceder en el tiempo. La información en 3D de SDSS-III recorre los últimos 6.000 millones años de vida del universo. "De esta manera, los científicos podemos calcular de forma aproximada cuánta materia oscura -aquella que no se ve porque no emite ni absorbe luz- hay en el universo. Y cuánta energía oscura está acelerando la expansión del universo", apunta Allende

Sin embargo, los nuevos datos de la colaboración no sólo pretenden desvelar los misterios del universo distante, sino también del entorno cósmico que rodea al ser humano: la Vía Láctea. Junto al mapa 3D, SDSS-III acaba de publicar estimaciones mejoradas sobre la temperatura y composición química de medio millón de estrellas de nuestra galaxia. Con ellas, señala el investigador del IAC, "podemos mirar hacia atrás y reconstruir la historia de formación de la Vía Láctea". (Fuente: IAC)

lunes, 6 de agosto de 2012

Las estrellas más brillantes no viven solas

Un nuevo estudio llevado a cabo utilizando el telescopio VLT (Very Large Telescope) de ESO, muestra que la mayor parte de las estrellas masivas muy brillantes, las cuales provocan la evolución de las galaxias, no viven solas. Se ha descubierto que, al menos tres de cada cuatro de estas estrellas, tienen una compañera cercana, muchas más de las que en un principio se creía. Sorprendentemente, muchas de esas parejas también están interactuando, generando capítulos de inestabilidad, tales como transferencia de masa de una estrella a la otra, e incluso se cree que alrededor de un tercio de ellas acabarán fundiéndose, formando una sola. Los resultados se publicaron en el número del 27 de julio de 2012 de la revista Science.

El Universo es un lugar plagado de diversidad, y hay muchas estrellas diferentes a nuestro Sol. Un equipo internacional ha utilizado el VLT para estudiar unas estrellas conocidas como “de tipo O”, que tienen unas temperaturas muy altas, así como mucha masa y un gran brillo. Estas estrellas tienen vidas muy cortas y violentas y juegan un papel clave en la evolución de las galaxias. También están relacionadas con fenómenos extremos como los estallidos de rayos gamma o las denominadas “estrellas vampiro”, donde una compañera de menor tamaño absorbe la materia de la superficie de su vecina, de mayor tamaño.

“Estas estrellas son auténticos monstruos”, afirma Hugues Sana (Universidad de Ámsterdam, Países Bajos), quien lidera este trabajo. “Tienen 15 o más veces la masa de nuestro Sol y pueden superar su brillo en más de un millón de veces. Estas estrellas están tan calientes que brillan con una intensa luz blanquiazul y tienen temperaturas superficiales de 30.000 grados Celsius”.

Los astrónomos estudiaron un conjunto de estrellas individuales de tipo O y parejas de estrellas (binarias), situadas en seis cúmulos cercanos de estrellas jóvenes en la Vía Láctea. La mayor parte de las observaciones de este estudio se obtuvieron utilizando telescopios de ESO, entre otros el VLT.


Analizando en profundidad la luz proveniente de estos objetos, el equipo descubrió que el 75% de todas las estrellas de tipo O se encuentran en sistemas binarios, una proporción mayor de la estimada hasta el momento y la primera determinación numérica precisa. Aún más importante incluso: encontraron que la proporción de estas parejas que se encuentran lo suficientemente cerca como para interactuar (ya sea por fusiones estelares o por transferencia de masa en las denominadas “estrellas vampiro”), es mucho mayor de lo que se había pensado hasta el momento, lo cual tiene profundas implicaciones en nuestra comprensión de la evolución de las galaxias.

Las estrellas de tipo O constituyen tan sólo una fracción del porcentaje total de estrellas en el universo, pero los violentos fenómenos asociados a su presencia implican un efecto desproporcionado en su entorno. Los vientos y choques provocados por estas estrellas pueden tanto desencadenar como frenar la formación estelar, su radiación alimenta el resplandor de las brillantes nebulosas, sus supernovas enriquecen las galaxias con elementos pesados cruciales para la vida, y están asociadas con los estallidos de rayos gamma, uno de los fenómenos más energéticos del universo. Por tanto, las estrellas de tipo O están implicadas en muchos de los mecanismos que desencadenan la evolución de las galaxias.

“La vida de una estrella se ve profundamente influenciada por el hecho de tener a otra estrella cerca”, afirma Selma de Mink (Instituto de Ciencias del Telescopio Espacial, - Space Telescope Science Institute-, EE.UU.), coautora del estudio. “Si dos estrellas orbitan muy cerca la una de la otra, pueden llegar a fundirse. Pero incluso si esto no ocurre, es común que una de las estrellas atraiga material de la superficie de su compañera”.

El equipo estima que la fusión entre estrellas, un fenómeno violento, puede ser el destino final de entre un 20 y un 30 por ciento de las estrellas de tipo O. Pero incluso un escenario más moderado como el de las estrellas vampiro, que alcanza a un 40-50% de los casos, tiene profundos efectos en la evolución de estas estrellas.

Hasta el momento, los astrónomos consideraban que, en su mayor parte, las estrellas binarias masivas que orbitaban muy cerca la una de la otra eran una excepción, algo que explicaba fenómenos exóticos como las binarias de rayos X, púlsares dobles y binarias de agujeros negros. El nuevo estudio muestra que, para interpretar correctamente el universo, no se puede hacer esta simplificación: estas parejas de estrellas pesadas no son sólo muy comunes, sino que sus vidas son diferentes a las de las estrellas individuales.

Por ejemplo, en el caso de las estrellas vampiro, la estrella más pequeña, de menor masa, rejuvenece a medida que absorbe el hidrógeno fresco de su estrella compañera. Su masa aumentará substancialmente y sobrevivirá a su compañera, viviendo más tiempo que una estrella individual de la misma masa. La estrella víctima, mientras tanto, perderá sus capas antes de tener la oportunidad de convertirse en una luminosa estrella roja supergigante. En su lugar, su caliente núcleo azul quedará al descubierto. El resultado es que la población de estrellas de una galaxia distante puede parecer mucho más joven de lo que es en realidad: ambas, las estrellas vampiro rejuvenecidas, y las víctimas empequeñecidas, se vuelven más calientes y más azules, imitando la apariencia de estrellas más jóvenes. Conociendo la proporción real de estrellas binarias masivas que interactúan es crucial para caracterizar correctamente estas galaxias distantes.

“La única información que tienen los astrónomos sobre galaxias distantes viene de la luz que llega a nuestros telescopios. Sin aceptar supuestos sobre cuál es el origen responsable de emitir esa luz, no podemos sacar conclusiones sobre la galaxia, como determinar cuán masiva es o cuál puede ser su edad. Este estudio demuestra que aceptar el supuesto de que la mayor parte de las estrellas son individuales puede llevarnos a conclusiones erróneas”, concluye Hugues Sana.

Para comprender la magnitud de estos efectos, y cuánto puede cambiar esta nueva perspectiva nuestra visión de la evolución de las galaxias, serán necesarios más estudios. Modelar estrellas binarias es complicado, por lo que llevará tiempo antes de que todas estas consideraciones se incluyan en modelos de formación de galaxias. (Fuente: ESO)

viernes, 3 de agosto de 2012

La paradoja del calentamiento global promoviendo inviernos más fríos

En lo que parece una ironía meteorológica, el calentamiento global puede propiciar, durante una época, inviernos más fríos en ciertas partes del mundo. La complejidad del sistema climático hace que una alteración provoque otras, y así sucesivamente, en un efecto dominó que puede llevar a resultados un tanto inesperados.

La gran pérdida de hielo del Mar Ártico como consecuencia del cambio climático es un ejemplo de ello, pues puede provocar en el futuro un aumento de las probabilidades de tener inviernos extremos excesivamente fríos en las latitudes medias del Hemisferio Boreal.

Recientemente, Charles H. Greene y Bruce C. Monger, ambos del departamento de ciencias terrestres y atmosféricas en la Universidad de Cornell, en Ithaca, Nueva York, han analizado en detalle este fenómeno.

Un planeta Tierra más cálido presenta una mayor tasa de fusión de los hielos árticos durante el verano, exponiendo las aguas subyacentes, que son más oscuras, a la radiación incidente. Ese fenómeno acarrea una mayor absorción de la radiación solar y un calentamiento estival extra del océano, acelerando aún más la fusión de los hielos. El calor no retenido se libera a la atmósfera, sobre todo durante el otoño, lo que provoca disminuciones en los gradientes de la presión atmosférica y la temperatura, entre las latitudes árticas y medias.

Un gradiente latitudinal de presión más débil siempre está asociado a un debilitamiento de los vientos asociados con el Vórtice Polar y la Corriente en Chorro. Como el Vórtice Polar normalmente retiene las masas frías polares por encima del Círculo Polar Ártico, su debilitamiento permite que las masas de aire frío invadan latitudes más bajas.

A partir de las recientes observaciones, se observa un giro en el comportamiento de la Oscilación Ártica, un patrón de variabilidad climática natural en el Hemisferio Norte. Antes de que la actividad industrial humana comenzara a calentar el planeta, el sistema climático del Ártico oscilaba de forma natural entre las condiciones favorables y las desfavorables para los frentes fríos que arrastran consigo las masas de aire ártico.

Lo que sucede ahora es que nosotros, los seres humanos, estamos cambiando el sistema climático, sobre todo en el Ártico, y este cambio antropogénico aumenta las posibilidades de que se den las condiciones que favorecen los frentes fríos y los inviernos extremos.